所以不被老教授们待见也是很正常的事,因此平原李爱兰提出了一个办法,那就是钓鱼,以一个足够有趣的难题作为鱼饵,钓那些感兴趣的教授们上钩。
除了平原意外,甘栀茗三人作为在飞升学院也是十分优秀的学员,脑子里有的是足够有趣的难题,精心挑选几个出来,看看来自飞升学院的知识是否可以和这里的人擦出火花。
实施的方法也很简单,平原找了个没人的角落,做了大白板出来,就立在了海神大学实验区广场的边上,这里来来往往的学生很多,而且都是那些乐于学习,经常游走于实验室的优秀学生们,对于解决这种难题的yù_wàng可是强的很,就不信他们不上钩。
而且平原们出的题难度相当大,仅靠平原自己的话,也是解不出来的,不过他有伊思相助,再加上之前海量的知识储存,还有可以加速大脑思维速度的学习模块辅助,所以花点时间解出来倒是问题不大。
但是这些学生们就不一样了,这是一个知识积累量的问题,没有足够的底子,想要解出来的是十分困难的,而这些学生们只要解不出来,到时候肯定会去咨询他们的导师,也就是那些教授们,只要有第一个教授忍不住诱惑来到了平原们面前,就肯定会有源源不断的教授们过来围观的,这样平原们的目的也就达到了。
第一个问题是李爱兰出的,是一个数学题,李爱兰在数学上的水平可是相当高的,题目是计算圆周率的小数后200位,并且给出了相对详细的解题过程,不过这解题过程非常的复杂,平原制作的这块足有五平米的大白板别写得密密麻麻,各种复杂到恐怖的公式更是一个接一个,数学底子不够的人,恐怕连跟着步骤走一遍都难,别说理解了。
平原看了一会,发现有点头大,基本上是看不懂了,果断让伊思介入,启动辅助学习模块,思维变得敏捷之后,就好理解了许多,而且每出现一个新的知识点,伊思就会第一时间调出相关的资料,因此平原仅仅是花了不到十分钟,就彻底明白这个数学题的难度和有趣之处。
圆周率是一个很常用的数学数值,它代表正圆形的周长和直径的比值,大概是3.14左右,这个数值在航海学上用的十分广泛,特别是绘制海图的时候,圆周率的发现为很多航海员带来了便利和精准性。
不过圆周率也是一个神奇的数字,和人类认知的普通数字不同,它是一个超越数,也就是无限不循环的小数,人类永远也无法得到完全正确的圆周率,只是无限接近它而已,多年来,海上各城市的数学家们都在研究怎么加大圆周率的计算精度,不过因为海上城市之间相对遥远的距离和通讯限制,所以大家的交流都很少,除了在飞升市学院这种地方已经算出上千位的数值以外,其他城市大多数都只有十几位而已,实力的差距非常明显。
因此当如此复杂的算法一摆出来,立马就有学生过来参观了,虽然大多数看了半天,一脸茫然的离开了,但还是有不少能力更优秀额学生留在了白板面前苦思冥想。
:。: